Segmental minimum Bayes-risk ASR voting strategies
نویسندگان
چکیده
ROVER [1] and its successor voting procedures have been shown to be quite effective in reducing the recognition word error rate (WER). The success of these methods has been attributed to their minimum Bayes-risk (MBR) nature: they produce the hypothesis with the least expected word error. In this paper we develop a general procedure within the MBR framework, called segmental MBR recognition, that encompasses current voting techniques and allows further extensions that yield lower expected WER. It also allows incorporation of loss functions other than the WER. We present a derivation of voting procedure of N-best ROVER as an instance of segmental MBR recognition. We then present an extension, called e-ROVER, that alleviates some of the restrictions of N-best ROVER by better approximating the WER. e-ROVER is compared with N-best ROVER on multi-lingual acoustic modeling task and is shown to yield modest yet significant and easily obtained improvements.
منابع مشابه
Discriminative training for segmental minimum Bayes risk decoding
A modeling approach is presented that incorporates discriminative training procedures within segmental Minimum Bayes-Risk decoding (SMBR). SMBR is used to segment lattices produced by a general automatic speech recognition (ASR) system into sequences of separate decision problems involving small sets of confusable words. Acoustic models specialized to discriminate between the competing words in...
متن کاملCorrections to "Segmental minimum Bayes-risk decoding for automatic speech recognition"
In our recently published paper [1], we presented a risk-based lattice cutting procedure to segment ASR word lattices into smaller sub-lattices as a means to to improve the efficiency of Minimum Bayes-Risk (MBR) rescoring. In the experiments reported [1], some of the hypotheses in the original lattices were inadvertently discarded during segmentation, and this affected MBR performance adversely...
متن کاملLattice segmentation and minimum Bayes risk discriminative training
Modeling approaches are presented that incorporate discriminative training procedures in segmental Minimum Bayes-Risk decoding (SMBR). SMBR is used to segment lattices produced by a general automatic speech recognition (ASR) system into sequences of separate decision problems involving small sets of confusable words. We discuss two approaches to incorporating these segmented lattices in discrim...
متن کاملSupport Vector Machines for Segmental Minimum Bayes Risk Decoding
Segmental Minimum Bayes Risk (SMBR) Decoding is an approach whereby we use a decoding criterion that is closely matched to the evaluation criterion (Word Error Rate) for speech recognition. This involves the refinement of the search space into manageable confusion sets (ie, smaller sets of confusable words). We propose using Support Vector Machines (SVMs) as a discriminative model in the refine...
متن کاملRisk based lattice cutting for segmental minimum Bayes-risk decoding
Minimum Bayes Risk (MBR) decoders improve upon MAP decoders by directly optimizing loss function of interest: Word Error Rate MBR decoding is expensive when the search spaces are large Segmental MBR (SMBR) decoding breaks the single utterance-level MBR decoder into a sequence of simpler search problems. – To do this, the N-best lists or lattices need to be segmented We present: A new lattice se...
متن کامل